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Abstract. Assessments of water balance, watershed response, and landscape evolution to climate change require representation 

of spatially and temporally varying rainfall fields over a drainage basin, as well as the flexibility to simply modify key driving 

climate variables (evaporative demand, overall wetness, storminess). An empirical-stochastic approach to the problem of 

rainstorm simulation enables statistical realism and the creation of multiple ensembles that allow for statistical characterization 

and/or time series of the driving rainfall over a fine grid for any climate scenario. Here we provide detail on the STOchastic 15 

Rainfall Model (STORM), which uses this approach to simulate drainage basin rainfall. STORM simulates individual storms 

based on Monte Carlo selection from probability density functions (PDFs) of storm area, storm duration, storm intensity at the 

core, and storm center location. The model accounts for seasonality, orography, and the probability of storm intensity for a 

given storm duration. STORM also generates time series of potential evapotranspiration (PET), which are required for most 

physically based applications. We explain how the model works and demonstrate its ability to simulate observed historical 20 

rainfall characteristics for a small watershed in SE Arizona. We explain the data requirements for STORM and its flexibility 

for simulating rainfall for various classes of climate change. Finally, we discuss several potential applications of STORM.    

1 Introduction 

Models of watershed response (rainfall-runoff), water balance, and landscape evolution require characterization of the driving 

climate, particularly spatially explicit rainfall fields over a time series. The spatial and temporal variability in water delivery 25 

to the land surface from the sky and its fate within a drainage basin is a major control on: a) the partitioning of water between 

infiltration and runoff, which affects flood risk and water resources (Beven and Freer, 2001;Beven et al., 1995;Michaelides 

and Wilson, 2007;Slater et al., 2015;Liang et al., 1994); b) water availability to vegetation, which impacts growth, survival, 

ecosystem health, and the carbon cycle (Rodriguez-Iturbe et al., 2001;Peñuelas et al., 2011;Singer et al., 2014;Caylor et al., 

2006); and c) patterns and processes of sediment erosion and deposition, which affect the long-term evolution of landscapes 30 

(Singer, 2010;Hobley et al., 2017;Tucker and Bras, 2000;Slater and Singer, 2013;Tucker and Slingerland, 1997;Michaelides 

et al., 2018), as well as the redistribution of contaminants with basins (Singer et al., 2013;Springborn et al., 2011;Higson and 
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Singer, 2015) and the hydrologically controlled in situ biogeochemical processing of such contaminants into more dangerous 

forms (Singer et al., 2016;Donovan et al., 2016a, b).  

 

However, generating realistic, spatially explicit rainfall fields in drainage basins is a major challenge for several reasons. First, 

rain gauge data are not typically available at the appropriate spatial representativeness or length of record to well characterize 5 

spatial heterogeneity, although radar data can be helpful to improve spatial representation of storms. Second, rain gauge data 

represent only one realization of multiple potential temporal sequences and spatial patterns of rainfall. Third, global climate 

models (general circulation models, GCMs) operate at spatial resolutions that are too coarse to represent heterogeneous rainfall 

fields over small basins or rainfall intermittency (Grotch and MacCracken, 1991;Trenberth et al., 2017). Fourth, while weather 

generators (regional circulation models, RCMs or convection permitting models, CPMs) downscale GCM output for use in 10 

dynamic simulation of weather, the model interaction is unidirectional and a regional model is wholly reliant on the boundary 

conditions provided by the GCM, which may not well characterize the regional dynamics of climate change (Prein et al., 

2015;Endris et al., 2013;Prein et al., 2017;Dunning et al., 2017). Fifth, weather generators that operate at high spatial resolution 

based on the relevant physics of air mass movement and precipitation formation require detailed information on winds and 

storm trajectories (Skamarock et al., 2008) that are not available for most basins, and which are challenging to summarize over 15 

longer periods of time (e.g., decades).  

 

A further consideration is that internationally agreed climate change scenarios themselves (e.g., the Intergovernmental Panel 

on Climate Change, IPCC) may limit our learning about the regional expression of recent and future climate change because 

they have already constrained the problem into covarying sets of gridded climate variables from GCM output (or re-analysis 20 

data products) based on particular global emissions scenarios. Given major challenges of GCMs to represent rainfall at the 

basin scale with variance in topography and orography, ensemble output of climate change projections from GCMs (e.g., 

CMIP5, CMIP6) are unlikely to provide good characterization of the regional or local expression of climate change (Dunning 

et al., 2017). More importantly, GCM output and re-analysis data products do not allow for the flexibility to assess watershed 

responses to a wide range of potential regional climate changes that could impact runoff/flood regimes, groundwater recharge, 25 

the water balance between plants and the hydrologic cycle, and basinwide erosion and topographic development. This is 

especially true in regions where orography and other complicating land surface dynamics affect rainfall fields.     

 

There is a class of rainfall space-time rainfall generator models that already exist, which are capable of creating spatially 

explicit rainfall fields for various purposes (Paschalis et al., 2013;Peleg and Morin, 2014;Niemi Tero et al., 2015;Peleg et al., 30 

2017;Benoit et al., 2018). However, each has its peculiarities in operation, data requirements, computational efficiency, 

programming language, and output resolution, limiting general applications of rainfall simulation to a wider range of modeling 

applications such as watershed response, ecohydrology, geomorphic landscape evolution, and land-surface responses to a 

changing climate. 
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To fill this research gap, we have developed the STOchastic Rainfall Model (STORM), which generates time series of spatially 

explicit rainfall fields over a gridded domain and spatially uniform time series of evaporative demand. Together these time 

series can be used to drive watershed responses within dynamic rainfall-runoff models, water balances within land surface 

models, or runoff/erosion regimes within landscape evolution models. STORM was introduced elsewhere to explore rainfall 5 

patterns and processes within a small drainage basin in the Southwest USA (Singer and Michaelides, 2017), but here we 

provide the relevant detail about the model initialization, operation, and evaluation, and describe various improvements that 

have been made since its initial appearance in the scientific literature. Additionally, we suggest several additional modifications 

to STORM that may improve its long-term utility, and we outline its potential for broader use in various hydrologic, 

ecohydrologic, and geomorphic applications. We also provide links to open source code for STORM in two forms (Matlab 10 

and Python), along with sample input data and parameters.  

 

2 Model Initialization and Operation 

 

The STOchastic Rainfall Model (STORM) is an empirical-stochastic rainfall generator designed for simple, heuristic 15 

simulation of high resolution drainage basin rainfall under control climate conditions or under different classes of climate 

change. The term ‘empirical-stochastic’ (sensu (Singer and Dunne, 2004)) refers to Monte Carlo selection of several key 

rainstorm characteristics from distributions that are created from historic datasets. STORM performs this multi-layer parameter 

selection to create multiple sequences of spatially varying rainfall over a drainage basin and over a multi-decadal time series. 

STORM output is particularly useful for simulating rainfall patterns in regions subjected to convective rainfall, where gridded 20 

datasets of precipitation do not capture the dynamic behavior (spatial and temporal variability) of rainstorms, and where GCM 

output is of limited utility in understanding expected changes in rainfall regimes over a basin.  

 

Implementing STORM involves initialization and operation steps (Fig.1). Initialization involves creation of distributions of 

relevant variables that characterize rainstorms and the rainfall they produce over a spatial grid. STORM can be run with 1 or 25 

more hydrologic seasons with different rainfall characteristics. Model inputs include (Fig.2): annual/seasonal precipitation 

total, PTotal (A); storm area, which determines which grid locations in the basin are ‘hit’ by each storm (B); storm center location 

on a storm grid with defined spacings (C); storm duration, PD (D); rainfall intensity-duration curve number based on a family 

of curves from which intensity, PI, at the storm center is determined based on the selected value of PD (E); and storm spatial 

gradient, or the decline in PI with distance from the storm center (F). An additional distribution that is required to create a 30 

complete dataset for driving other models is potential evapotranspiration (PET). The PET distribution contains historic daytime 

and nighttime values for the region of interest organized into data by month of the year. This distribution is sampled on a 

twice-daily basis to characterize average daytime and nighttime evaporative demand that follows the same time signature as 

https://github.com/blissville71/STORM
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the gridded rainfall. PET is assumed to be spatially uniform across the watershed for any 12-hour period. Each of these 

initializing variable distributions can be created from data from a drainage basin, should these data be available (e.g., from 

one, several, or a network of rain gauges and meteorological stations), or theoretically, based on nearby basin data or 

generalizing assumptions. Finally, a characterizing interarrival times between storms is necessary to enable explicit watershed 

responses to rainfall inputs (Fig.3). A distribution of interarrival times is assembled from historic data at all relevant gauging 5 

stations. The probability density functions (PDFs) that represent these historical data for each model variable reside external 

to the STORM code which calls them, and they can thus be easily modified as new information becomes available. For this 

paper, PDFs were fit manually using Matlab’s Distribution Fitting Tool (distfittool), but we recommend that this be automated 

using a code that optimizes the fit based on maximum likelihood estimators. The particular distributions shown in Fig. 1 were 

generated by manual investigation based on best fit, but we recommend the automated approach.  10 

 

 

 

Figure 1. Schematic flow diagram illustrating key steps in STORM initialization and operation. Initialization involves 

gathering data, creating input PDFs, generating input parameters, creating and input/output (I/O) folder structure, and selecting 15 

a scenario of climate change, as well as the number of simulations and the length of each simulation. Operation proceeds with 

the selection of a seasonal or annual precipitation total threshold, followed by generation of rainstorms until the total threshold 

is satisfied, at which point the season or year changes. Finally output data are written matrices and files. These steps are 

outlined in detail within the source code documentation: https://github.com/blissville71/STORM.  

 20 
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Figure 2. Components required for model initialization and simulation. For each year, a selection is made from the PDF of 

PTotal (A). Then, during each simulation year, selections are made from the following PDFs on a storm-by-storm basis: storm 

area (B), storm center location on a UTM grid, red dots, within a 5-km buffer around the watershed boundary (C), storm PD 5 

(D), intensity-duration (PI-PD) curve number (E) based on probabilistic selection favoring less intense storms (see below), and 

storm intensity gradient with distance from storm center (F).  
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Figure 3. PDF of interarrival times which enables watershed response and water balance computations. 

 

 

Intensity-duration curves are generated (annually or for each season) by first computing the maximum PI value for each value 5 

of PD (per minute). We then smoothed the resulting points by LOcally WEighted Scatterplot Smoothing (LOWESS, 

(Cleveland, 1979)) using the ‘smooth’ function in Matlab with a span of 0.1 with a 2nd order polynomial model. Subsequently 

we fit a distribution to the LOWESS curve using the Curve Fitting Tool in Matlab. This resulted in the functional form of a 

double negative exponential curve, consistent with other datasets from dryland regions (Nicholson, 2011). The general 

equation for the PI-PD curves in (E) is: PI = ͗λ*exp(-0.508*PD)+κ*exp(-0.008*PD)+c. Parameter values for Curve 1 are: λ 10 

=642.2; κ=93.1; c=4.5. Next, we maintained the same functional form of the fitted maxima curve (Curve 1) but decreased the 

magnitude of its coefficients (not the decay parameters) and the intercept, where relevant, by percentiles (90th, 80th, 70th, … 

10th, 5th) to generate multiple curves that occupy the full phase space of measured PI-PD pairs (Fig.2E). Note: PI values are 

selected from one of the curves in (E) using a selected value of PD from (D), and then a fuzzy tolerance within ±5 mm/hr is 

applied. 15 

 

The phase space of PI-PD is not uniform in terms of probability of occurrence of each rainfall event. There is a tendency for 

more intense storms to occur less frequently than less intense ones. Therefore, each PI-PD curve is assigned a probability of 

selection that reflects this fact, wherein the most intense curves (1-3) are assigned lower probability of selection (-30%, -20%, 

-10%, respectively) and the least intense ones (9-11) are assigned higher probability of selection (+30%, +20%, +10%, 20 

respectively) with respect to a hypothetical uniform distribution in curve selection probability (Fig.4A). In other words, rather 

than assigning a uniform selection probability of 0.091 to all eleven curves, we decreased the probability of selection of the 

top three and increased the probability of selection of the bottom three curves. This yields the adjusted curve of probabilities 
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labeled as ‘Control’ in Figure 4A. The empirical curve-fitting method described here is not very elegant or generalizable to 

different areas, so in future versions of STORM, we will explore the use of cupolas to represent intensity-duration relationships 

as marginal probabilities (e.g., (Vandenberghe et al., 2011)). 

 

STORM also incorporates orography, or the tendency for rainfall to vary with elevation, which is common in many drainage 5 

basins around the world. We simulate orography by further modifying the probability of curve number selection from the 

‘Control’ curve to account for higher intensity rainfall at higher elevations (Fig.4B). Based on a hypsometric analysis of rainfall 

as a function of elevation from gauging records, we divided all rainfall grid locations into three orographic groups based on 

elevation (Fig.2C from (Singer and Michaelides, 2017)). Then we modified PI-PD curve selection probabilities for each storm 

center accordingly. The lowest orographic group (OG1) has the selection probability of Curve 1 (most intense curve) decreased 10 

by 50%, while the mid-elevation group (OG2) has a 25% reduction of probability for Curves 1 and 11, and the highest 

orographic group (OG3) has a 50% reduction of probability for selecting Curve 11 (least intense curve) (Fig.4B). This simple 

procedure of increasing/decreasing the probability of storm intensity at the storm center location appears to capture the general 

form of orography in the test basin (Fig.2D from (Singer and Michaelides, 2017)). However, a more explicit or theoretical 

method for characterizing the effects of orographic precipitation could replace the current method in STORM (e.g., including 15 

wind speed and direction, as relevant). We imagine that the cupola method mentioned above would also be suitable for 

characterizing orography by fitting separate cupolas to PI-PD data from gauges within different bands of elevation in a basin 

determined by hypsometry.  
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Figure 4. Assigned probabilities to PI-PD curve numbers for the various simulations. Refer to Fig.2E for their plotting positions. 

The initial case is shown in black and represents deviations of ±30%, ±20%, and ±10% probability for the first/last 3 curves 

to reflect the fact that larger storms are less probable than smaller ones (A). This initial case is modified as follows to account 

for basin orography (B). To represent orographic group 1 (OG1-lowest elevation group, Fig.2C from Singer and Michaelides 5 

(2017)), we decreased the probability of curve 1 by 50% and applied the difference uniformly to all other curves such that total 

probability equals 1. To represent orographic group 2 (OG2-middle elevation group), we decreased the probability of curves 

1 and 11 by 25% and applied the difference uniformly to all other curves. To represent orographic group 3 (OG3-highest 

elevation group), we decreased the probability of curve 11 by 50% and applied the probability difference uniformly to all other 

curves. Intensity-duration curve numbers correspond to those listed within circles in Fig.2E.  10 
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STORM is implemented as a function in Matlab with the following syntax: 

STORM(MODE, NUMSIMS, NUMSIMYRS, SEASONS, PTOT_SCENARIO, STORMINESS_SCENARIO, 

PTOT_SCENARIO2, STORMINESS_SCENARIO2, ET_SCENARIO). The input arguments are as follows. MODE refers to 

whether STORM is running in validation or simulation model. NUMSIMS refers to the number of n-year Monte Carlo 5 

simulations to be run. NUMSIMYRS is the number of years in each simulation. SEASONS indicates either one or two seasons 

with different PDFs to sample from. PTOT_SCENARIO refers to the climate change scenario to be simulated with respect to 

total annual or seasonal rainfall (wetness) in Season 1. STORMINESS_SCENARIO refers to the climate change scenario to 

be simulated with respect to rainfall intensity (storminess) in Season 1. PTOT_SCENARIO2 refers to the climate change 

scenario to be simulated with respect to total annual or seasonal rainfall (wetness) in Season 2. STORMINESS_SCENARIO2 10 

refers to the climate change scenario to be simulated with respect to rainfall intensity (storminess) in Season 2. ET_SCENARIO 

refers to climate change scenario for evapotranspiration (evaporative demand). Each of these climate change scenarios for 

rainfall can be implemented as either step changes (up or down) or as temporal trends (up or down) playing out over multiple 

decades, and there is full flexibility to modify the magnitude of these changes for both seasons. Currently the ET climate 

change scenario only permits step changes. We describe the climate change scenarios in more detail below. Current climate 15 

conditions can also be simulated for any or all of these input parameters. 

 

In Python, STORM is implemented similarly, but with some syntax differences. It is likewise implemented as a function, 

which can be simply imported from the defining script. This function is defined as: 

storm(mode, numsims, numsimyrs, seasons, ptot_scenario, storminess_scenario, ptot_scenario2, storminess_scenario2, 20 

ET_scenario, storminess_scaling_factor=0.05, storm_stepchange=0.25, storminess_scaling_factor2=0.05, 

storm_stepchange2=0.25, ptot_scaling_factor=0.05, ptot_scaling_factor2=0.05, ET_scaling_factor=0.25). The first nine 

arguments are identical to their Matlab equivalents. The remaining arguments that are supplied with default values permit 

direct control through the function call of the step and gradual change values specified by the preceding scenarios (see below) 

– in the Matlab version, these are controlled directly from the script defining the function. Documentation is provided as a 25 

docstring to the function. The Python version of storm has a number of very common Python packages as dependencies – os, 

time, numpy, datetime, matplotlib, scipy, and six. These are typically installed as standard in Python distributions. Storm in 

Python also requires the pyshp package, which is readily available through package managers including pip and conda. Storm 

in Python is agnostic between Python 2 and Python 3. In Python, input files (see below) are supplied as comma separated value 

(csv) files, rather than .mat files, but the contents of these files is identical to that in Matlab. Where distribution objects are 30 

provided in Matlab, these are provided to the Python version as simple text files specifying the key parameters of those 

distributions. More details of both of these input file formats are provided in the docstrings.  
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To operate STORM, we simulate rainfall on a storm-by-storm basis with a temporal resolution of 1 minute at each rainfall 

output grid location with a resolution of 1 km. The high spatial and temporal resolution enables rich information to be generated 

from STORM, allowing for detailed assessment of spatial heterogeneity and temporal variance in rainfall fields. We first select 

a threshold value of PTotal for a simulation year from its distribution and then generate rainstorms until the median running total 

of PTotal across all rainfall output grid locations within the basin equals or exceeds the selected threshold value of PTotal. Then 5 

a new simulation year begins and STORM proceeds until the length of simulation (e.g., several decades) is complete. PTotal can 

be designated as either a seasonal or annual total, depending on whether the watershed of interest is characterized by strong 

seasonality in rainfall. If STORM is implemented with two seasons, separate PDFs of rainstorm characteristics A, B, D, E 

(Figure 2) should be prepared for each season. PDFs for this paper were fit to historical data from WGEW using the 

Distribution Fitting Tool within Matlab v2017b. Sample distributions are provided here.  10 

 

To model climate change as a step change in wetness (shift in total annual precipitation), we shifted the PTotal distribution up 

PTotal(+) and down PTotal(–) by one standard deviation without changing its shape (A). To model climate change as a step change 

in storminess (shift in intensity for a particular rainstorm duration), we modified the selected intensity for all storms as: PI ± Ψ 

* PI, where Ψ is a fractional change in storm intensity (E). Thus, the selected intensity for all rainstorms is raised for PI(+) and 15 

lowered for PI(–).We have also built into STORM the capability to assess trends in both PTotal and PI by multiplying the selected 

value of either rainfall variable for each year of simulation by an annual change scalar (see below for details).  

 

The results generated at each rainfall output grid location over all simulations can be statistically analyzed. STORM generates 

an overall rainstorm matrix that includes: Storm # (#), Storm Area (km2), Storm Duration (min), Intensity-Duration Curve # 20 

(#), Storm Intensity at storm center (mm/hr), # Gauging (or rainfall grid) Locations Hit (#), Intensity Recession Value 

(mm/hr/km), Storm Total (mm), Longitude (m), Latitude (m), Year (y), and Cumulative Simulation Time (hr). STORM also 

generates a separate matrix of output at each rainfall grid location that includes: Year, Storm #, Local Storm Intensity (mm/hr), 

Storm Duration (min), Local Storm Total (mm), Annual Local Cumulative Precipitation Total (mm), Interarrival Time between 

storms (hr), and Cumulative Simulation Time (hr).  25 

 

All simulations of STORM for this paper were done using Matlab v.2017b on an Intel Dual Core i7-4712HQ CPU @ 2.30GHz 

running on a Dell Inspiron laptop with 16 GB of RAM. In simulation mode, each simulation of 30 years on a grid of 128 

rainfall locations within a 149 km2 basin took ~12.5 minutes for the Control run, or ~25 seconds per simulated year. The 

computational time of each ensemble varies depending on the scenario. For example, the simulation of PTotal(+) PI(–) took ~20 30 

minutes per 30-y simulation (or ~40 seconds per simulated year).  

 

3 STORM Application to Walnut Gulch 

 

https://github.com/blissville71/STORM
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Here we provide a few more details about how we assembled the relevant PDFs for WGEW that are shown in Figure 2. PDFs 

were generated within Matlab using the Distribution Fitting Tool, though the methods are straightforward enough to be easily 

applied within many data analysis software packages. To create the PDF of storm areas, we truncated the distribution of Syed 

et al. (2003) to exclude all rainstorms in their largest spatial bin (which comprised ~1/2 of all their rainstorms), and then fitted 

an extreme value distribution to the remaining storms (Fig.2B). Syed et al. (2003) indicated that this bin of high frequency for 5 

large spatial areas is probably an artefact of sampling such that they are overestimating storm areas due to repeat sampling of 

moving storms and due to the occurrence multiple simultaneous storm cells. Thus, our exclusion of this largest area bin is 

justified to achieve our goal of modeling individual (discrete) rainstorms and the resulting distribution has a mean storm area 

of just under 90 km2. In our initial tests of STORM, we found that the results were very sensitive to the β parameter (Eq.1; 

Fig.2F). Thus, to enable a variety of plausible storm gradients, we allowed β to vary according to a normal distribution (µ=0.25, 10 

σ=0.08, truncated to the interval [0.15, 0.67 km-1]), based on the range of values reported elsewhere for WGEW (Eagleson et 

al., 1987;Morin et al., 2005). 

 

We analyzed all the rainfall data from WGEW to assess the frequency of different storm intensities and found that, as expected, 

there is a high frequency of rainstorms with low intensity and vice versa (Fig.5). This validates our development of the 15 

‘Control’ set of curve selection probabilities (Fig.4A). 
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Figure 5. Data-derived number of rainstorms for various bins of storm intensity recorded at 85 WGEW gauges over 62 years. 

The historical record shows that are ~14,000 events of 10 mm/hr, ~3500 events of 25 mm/hr, ~200 events of 50 mm/hr, and 

~4 events of 100 mm/hr. 

In each multiyear simulation, storms of various areas cover different parts of STORM’s model domain. If we aggregate all the 

simulated rainfall data from each of the rainfall output grid locations, we see increasing coverage of the PI-PD phase space with 5 

increasing length of simulation in years (Fig.6). Simulations of 25 years appear to fill in much of the PI-PD phase space for 

‘Control’ (no-climate change) conditions (Fig.6F). This indicates that STORM is faithfully representing the input data on 

intensity-duration of rainfall in a stochastic treatment over multiple decades. 

 

Figure 6. Maps of simulated storms (red circles) on the model grid for individual simulations over periods of 1 year (A), 5 10 

years (B), and 25 years (C). Solid blue circles represent WGEW gauging stations. Lower panels indicate the corresponding 

intensity and duration values for simulated storms within the 1-y (D), 5-yr (E), and 25-yr (F) model runs for part of the intensity-

duration phase space. Green dots represent simulated storms and blue dots represent gauge observations (63 years of per-storm 

data at 85 gauging locations). 

 15 

Finally, a plausible characterization of climate change is necessary to gain insight into the potential impacts to watershed 

response. In terms of precipitation, climate change can manifest in wetter or drier conditions (e.g., over a season or a year) 

and/or in different storm characteristics (e.g., relationship between PI and PD). We therefore suggest there are two classes of 

climate change that affect convective precipitation and watershed response. In STORM we can simulate different classes of 
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climate change based on very simple rules. To simulate step changes in basin wetness (annual/seasonal precipitation totals), 

we shift the PDF of PTotal up for PTotal(+) or down for PTotal(–) by one standard deviation, while retaining the same shape of the 

distribution (Fig.2A). Note: this truncates the left tail of original PTotal distribution for the scenario of PTotal(–). To simulate step 

changes in storminess, we multiply the selected value of PI at the storm center by a scalar fraction and add (subtract) the 

product to the selected PI value to reflect increased (decreased) storminess (Fig.2E). Specifically, we modified the selected 5 

intensity for all storms as: PI ± Ψ * PI, where Ψ is a fractional step change in storm intensity. Thus, the selected intensity for 

all rainstorms is raised for PI(+) and lowered for PI(–). In this paper, we used a step change of Ψ = 0.25.  

 

We also enable the simulation of temporal trends in rainfall. We include scalar multipliers that can be set within the STORM 

code, and which are used to modify the relevant value of rainfall each year. For example, to characterize a trend in wetness 10 

(total precipitation per season or year), we annually update the PTotal PDF by generating a new PDF for each year after 

progressively modifying the mean value of the PDF (Fig.2A) as: μ = μ  ± μ * Φ , where Φ is a fractional scaling factor that 

increases the PDF of PTotal each year of simulation. Within STORM, a similar procedure is done for trends in storminess. In 

this case, to characterize a positive trend in storminess (magnitude of storm intensity per season or year), we annually update 

the PTotal PDF by generating a new PDF for each year after progressively modifying the mean value of the PDF as: PI ± Ω * 15 

PI, where Ω is a fractional scaling trend that increases the selected value of storm intensity by an accumulating trend each year 

of simulation (i.e., the storminess trend in any year of  simulation is computed as ΩY = Ω * Y, where Y is the simulation year). 

In this paper, we used initial values for both Ω and Φ of 0.05. We note that it is possible to simulate trends in storminess 

separate from trends in wetness, or in combination. 

4 Model Output and Evaluation 20 

It is possible to extract from STORM detailed output of rainfall characteristics for discrete rainstorms at each rainfall grid 

location, including storm-by-storm intensity, duration, and storm totals (Fig.7). Thus, one can develop a localized time series 

of these rainstorm characteristics for different locations or sub-basins within a drainage basin. Once the simulated interarrival 

times between each pair of rainstorms (Fig.3) are added back to the time series and used alongside the simulated times series 

of PET (Fig.8), we obtain a temporally explicit climate driver that can be used to drive models of watershed response, land 25 

surface models, or to make localized water balance calculations. Figure 9 illustrates output at a single gauging location of 

explicit time series of storm rainfall for different climatic scenarios (see below). Note that the time series shown in Figs.7-9 

only illustrate output for a single multi-decadal simulation. The stochastic capability of STORM allows for generation of 

multiple n-year simulations. Thus, the STORM output for all such simulations should ideally be analyzed statistically at each 

representative location to produce representative time series of rainfall variables. Otherwise, they can be used as ensemble 30 

inputs to other model frameworks. 
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Figure 7. Illustration of the detail of model output that is generated storm-by-storm for one 30-year simulation at a single 

gauging (rainfall grid) location, showing rainfall intensity (A), duration (B), and storm total (C) for each storm event simulated 

at that gauge. 
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Figure 8. Illustration of simulated evapotranspiration for a 25-y simulation with two seasons under (A) the control climate 

change scenario (no change in PET), (B) a 25% step-change increase in PET, and (C) a 25% step-change decrease in PET.  
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Figure 9. Illustration of simulated rainfall at one gauging location for a 25-y simulation with two seasons. The panels are: (A) 

control climate conditions (CC); (B) a step-change increase in PTotal for Season 1 and a step-change decrease in PTotal for Season 

2 (S1(+)/S2(-)); (C) a step-change decrease in PTotal for Season 1 and a step-change increase in PTotal for Season 2 (S1(-)/S2(+); 

(D) positive trends in PTotal for both seasons (S1(T+)/S2(T+); (E) a step-change increase in PI for Season 1 and a step-change 5 

decrease in PI for Season 2; (F) a step-change decrease in PI for Season 1 and a step-change increase in PI for Season 2; (G) 

positive trends in PI for both seasons. 
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We evaluated the model’s skill at simulating observed rainfall characteristics at 85 gauges in WGEW. We selected three 

representative variables: number of storms per year, average storm total, and total annual precipitation. We compared observed 

versus simulated values of these variables at each gauging location in WGEW. Fig.10 shows these as simulated versus 

observed on 1:1 plots, and relevant statistics on model skill are provided. Generally, STORM demonstrates a high level of skill 

at simulating rainfall characteristics across the domain, without any model tuning. The spread of points around the 1:1 line 5 

arises from the ensemble of multi-decadal simulations, and it will therefore vary from ensemble to ensemble. Generally, it is 

desirable to have a range of values that span the 1:1 line (above and below it). This ensures the model is generating a field of 

rainstorm characteristics beyond those which exist in the historical record, a notable strength of the Monte Carlo procedure 

implemented in STORM.  

Note: the random selection of model parameters (Figs.2 and 3) was done using the ‘random’ function in Matlab (v.2016b), 10 

when sampling from a PDF (e.g., PTotal), and using the ‘datasample’ function when sampling from a vector of data points 

(storm center location). The random number generator seed was shuffled prior at the beginning of each Matlab session. 
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Figure 10. Observed versus modeled statistics on annual monsoon precipitation: median number of storms per year (A), 

median storm total (B), and mean annual PTotal (C). Values of RMSE and PBIAS are also shown. No model tuning was 

performed to achieve these results. We note that observed values of storm total and PTotal are slightly overpredicted by our 
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simulations (over these 30 test ensembles, each of 30 years). Nevertheless, these results demonstrate a high level of model 

skill in reproducing a range of rainfall characteristics that span observed values without any model tuning. 

5 STORM in the Context of Climate Change 

Regional gridded datasets provide a picture of trends in certain climate variables that are relevant to rainstorms. Fig.11 shows 

monthly output at WGEW for the 0.5° CRU TS3.24.01 dataset for temperature anomalies (A) and precipitation anomalies (B). 5 

These datasets show a significant increase in temperature of ~2°C over recent decades (which constitutes the period of the 

WGEW rainfall record), but there is no clear trend in the monthly precipitation from this dataset. The lack of a trend in monthly 

precipitation data contrasts with the high-resolution data from WGEW, which showed a long-term increase in PTotal, but with 

declining PI (Singer and Michaelides, 2017). Such changes to the hydrology of a basin could have major implications for its 

runoff regime, water balance, and landscape evolution. This suggests that gridded datasets are not adequate for investigations 10 

of convective rainfall in dryland (and potentially many other) basins. This observation lends support for both detailed data 

analysis from dryland datasets such as WGEW, but also for modeling approaches such as STORM for exploring the potential 

impacts of climate change on rainfall and watershed responses.  

Fig.8 shows STORM output of ET showing clear day-night variations, as well as seasonality (monthly day-night ET were 

sampled from historical data compiled by month). Fig.8A shows the control climate scenario, Fig.8B shows a step-change 15 

increase in ET, and Fig.8C shows a step-change decrease. Fig.9 illustrates STORM rainfall output at a single gauging point in 

the basin as complete time series that include interarrival times, so the data can be used to drive other models. The figure also 

shows these time series of rainstorm totals for various climate change scenarios including control climate (A), a step change 

increase in total Season 1 rainfall with a step change decrease in total Season 2 rainfall (B), a step change decrease in total 

Season 1 rainfall with a step change increase in total Season 2 rainfall (C), positive trends in total rainfall for both seasons (D), 20 

a step change increase in Season 1 rainfall intensity with a step change decrease in Season 2 rainfall intensity (E), a step change 

decrease in Season 1 rainfall intensity with a step change increase in Season 2 rainfall intensity (F), and positive trends in 

rainfall intensity for both seasons (G). These outputs illustrate the range of capability included in STORM for simulating an 

array of different regional expressions of climate change that could have important implications for watershed response. In 
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general increases in PTotal tend to densify the number of rainstorms in the time series (and vice versa), while increases in 

storminess, tend to create more peaked rainstorm totals (c.f., Fig.9D, Fig.9G).       

 

Figure 11. Monthly mean temperature (A) and monthly mean precipitation anomalies (B) for the closest grid location to 

Walnut Gulch from the 0.5° CRU TS3.24.01 dataset (Harris and Jones, 2017). These plots show a recent increase in mean 5 

temperature that could influence rainfall PI-PD relationships, irrespective of the lack of long-term trend in precipitation totals 

from the gridded dataset. Curves are based on LOWESS smoothing (Cleveland, 1979) via the ‘smooth’ function in Matlab 

(v.2016b) using a 30% data span. 

6 STORM Data Requirements 

An important consideration of any model is the data requirements. Obviously, the less data required enables more widespread 10 

model use to do tackle environmental problems. However, on the other end of this spectrum, insufficient data can lead to poor 

model skill. Thus, we aimed to strike a balance that would enable widespread use of STORM with limited data. In terms of 

storm event rainfall data, we investigated how much rain gauge data is required by STORM to well characterize the historical 

phase space of rainfall characteristics. For WGEW, we plotted event rainfall intensity versus duration for 100% of the available 

data, 50%, 25%, 10%, 5%, and 1% (Fig.12). This analysis shows that even at 1% of the available data (n=1,851 rainfall events), 15 
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the PI-PD phase space is still clearly delineated, allowing for development of the necessary PI-PD curves (Fig.2E). This suggests 

one could use data from a basin with only one or several rain gauges that have collected event rainfall for a few decades. 

Another important data requirement in STORM is a PDF of storm areas (Fig.2B). This may be a more challenging PDF to 

develop due to limited data. Options here include analyzing spatial statistics on discrete storms from a network of rain gauges 

(e.g., (Syed et al., 2003)), analyzing storm characteristics from rainfall radar images (e.g.,(Peleg and Morin, 2012)), or 5 

developing a hypothetical distribution based on regional understanding of mapped rainstorms (e.g., from hyetographs). Finally, 

the density of the gauging network could have important influence on the storm intensity gradient with distance from the storm 

center, so the parameters of this relationship may be less certain for less dense gauge spacings.  

 

 10 

Figure 12. Illustration of the limited sensitivity of STORM to the quantity of input data. Plots of PI versus PD for various 

percentages of the complete dataset (indicated at the upper right of each subplot) show that even when only 5% of the original 

gauge data are included, the PI-PD phase space for the complete dataset is still broadly defined. The number of data points 

declines across these subpanels from 185,109 (100%) to 1,851 (1%). These factors indicate that STORM could be reasonably 
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applied in a basin with dramatically less available gauging data, if other storm characteristics can be constrained by other 

means. 

 

7 Extension/Modification of STORM for Additional Applications 

For many applications, a complete accounting of the water balance between precipitation, evapotranspiration, and infiltration 5 

is required. Specifically, closing the local water balance requires quantifying the evaporative demand and the length of inter-

storm periods, which enable drainage and drying of soil layers. These factors affect the watershed response to subsequent 

rainfall events. In order to characterize these aspects, we have modified STORM from its original capability (Singer and 

Michaelides, 2017) to include several new features. First, we have added a PDF of inter-storm periods that is sampled randomly 

after each storm event. The addition of these inter-storm periods changes STORM output into time series that reflect real time 10 

at the Earth’s surface (e.g., Fig.9). Second, we have assembled a PDF of potential evapotranspiration based on measurements 

of temperature and relative humidity, metrics which are readily available over multiple scales (Fig.8). Third, we implemented 

seasonality in rainfall to enable simulations over a single season or year, or over two seasons with distinct differences in 

precipitation characteristics (distinct PDFs of rainfall in summer compared to winter). The WGEW example implemented for 

illustration of the model here is one such basin with a strong monsoon season that produces a high percentage of the annual 15 

rain and most of the runoff, compared with the winter season dominated by weak frontal storms.  

These improvements to STORM now make it suitable as a climate driver of other watershed response models that simulate 

hydrology between slopes and channels (surface runoff, infiltration, streamflow) (Michaelides and Wainwright, 

2002;Michaelides and Wilson, 2007;Michaelides and Wainwright, 2008), groundwater recharge during and after rainfall 

events (Beven and Freer, 2001), and interactions between streamflow and alluvial aquifers (Evans et al., 2018). It also enables 20 

STORM to be useful in water balance models (e.g., Land Surface Models) to assess water availability to plants through 

dynamic ecohydrological simulation of plant-climate interactions and water utilization (D'Odorico et al., 2007;Caylor et al., 

2006;Laio et al., 2006), as well as energy/carbon fluxes between the land surface and the atmosphere (Best et al., 2011;Bonan, 

1996). Finally, STORM can also be used to drive geomorphic models that characterize erosion and deposition processes within 

drainage basins in response to sequences of rainfall and runoff (Michaelides et al., 2009;Michaelides et al., 2012;Michaelides 25 

and Martin, 2012;Michaelides and Singer, 2014), and even landscape evolution models that simulate landform development 

over longer timescales (Tucker and Hancock, 2010;Hobley et al., 2017). Coupling STORM to such models would enable a 

wide range of interdisciplinary scientists to investigate key problems in the environment that have their origin in the climate 

system. These range from which water sources are used by plants (Sargeant and Singer, 2016;Evaristo et al., 2015;Evaristo 

and McDonnell, 2017;Singer et al., 2014;Dawson and Ehleringer, 1991) to what is the dominant source and timing of 30 

groundwater recharge (Cuthbert et al., 2016;Wheater et al., 2010;Scanlon et al., 2006) to the role of climate in shaping 
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landscape morphology (Singer and Michaelides, 2014;Tucker and Bras, 2000;Tucker and Slingerland, 1997;Michaelides et 

al., 2018). A version of STORM is under active development in the modular open-source surface process modelling framework 

Landlab (Hobley et al., 2017), in part to facilitate such future work. Another key area of future work would be to investigate 

how temporal resolution of rainfall data affects the signal of observed trends in rainfall (e.g., (Barbero et al., 2017)) and how 

these might yield different watershed responses. 5 

8 Code availability and sample data  

Both Matlab and Python versions and sample data can be found here. Documentation is also provided at that link. The DOI 

for the version 1.0 is doi:10.5281/zenodo.1291898. 
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